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Abstract. Feynman’s path amplitude formulation of quantum mechanics is used to analyse the production
of charged leptons from charged current weak interaction processes. For neutrino induced reactions the
interference effects predicted are usually called “neutrino oscillations”. Similar effects in the detection of
muons from pion decay are here termed “muon oscillations”. Processes considered include pion decay (at
rest and in flight), and muon decay and nuclear β-decay at rest. In all cases studied, a neutrino oscillation
phase different from the conventionally used one is found.

1 Introduction

The quantum mechanical description of neutrino oscilla-
tions [1,2] has been the subject of much discussion and
debate in the recent literature. The “standard” oscillation
formula [3], yielding an oscillation phase1, at distance L
from the neutrino source, between neutrinos, of mass m1
and m2 and momentum P , of2

φ12 =
(m2

1 −m2
2)L

2P
, (1.1)

is derived on the assumption of equal momentum and
equal production times of the two neutrino mass eigen-
states. Other authors have proposed, instead, equal ener-
gies [4] or velocities [5] at production, confirming, in both
cases, the result of the standard formula. The latter refer-
ence claims, however, that the standard expression for φ12
should be multiplied by a factor of two in the case of the
equal energy or equal momentum hypotheses when differ-
ent production times are allowed for the two mass eigen-
states. However, the equal momentum, energy or velocity
assumptions are all incompatible with energy-momentum
conservation in the neutrino production process [6].

The present paper calculates the probabilities of oscil-
lation of neutrinos and muons produced by pions decaying
both at rest and in flight, as well as the probabilities of
neutrino oscillation following muon decay or β-decay of a
nucleus at rest. The calculations, which are fully covari-
ant, are based on Feynman’s reformulation of quantum
mechanics [7] in terms of interfering amplitudes associated

1 The interference term is proportional to cos φ12 or sin2 φ12
2 .

2 Units with � = c = 1 are used throughout.

with classical space-time particle trajectories. The essen-
tial interpretational formula of this approach3, though mo-
tivated by the seminal paper of Dirac on the Lagrangian
formulation of quantum mechanics [8], and much devel-
oped later in the work of Feynman and other authors [9],
was actually already given by Heisenberg in 19304 [10].
The application of the path amplitude formalism to neu-
trino or muon oscillations is particularly straightforward,
since, in the covariant formulation of quantum mechanics,
energy and momentum are exactly conserved at all ver-
tices and due to the macroscopic propagation distances
of the neutrinos and muons all these particles follow es-
sentially classical trajectories (i.e. corresponding to the
minima of the classical action) which are rectilinear paths
with constant velocities. The essential formula of Feyn-
man’s version of quantum mechanics, to be employed in
the calculations presented below, is [7,10]

Pfi =

∣∣∣∣∣
∑
k1

∑
k2

...
∑
kn

〈f |k1〉〈k1|k2〉...〈kn|i〉
∣∣∣∣∣
2

, (1.2)

where Pfi is the probability to observe a final state f ,
given an initial state i, and kj , j = 1, n are (unobserved)
intermediate quantum states. In the applications to be
described in this paper, which, for simplicity, are limited
to the case of the first two generations of leptons, (1.2)

3 Postulate 1 and (7) of [7].
4 Heisenberg remarked that the fundamental formula (1.2)

must be distinguished from that where the summation over in-
termediate states is made at the level of probabilities, rather
than amplitudes, and that the distinction between the two for-
mulae is “the centre of the whole quantum theory”.



360 J.H. Field: Spatially dependent quantum interference effects in the detection probability of charged leptons

specialises to5

Pe−π+ =

∣∣∣∣∣∣
∑

k=1,2

〈e−|νk〉〈νk, xD|νk, xk〉〈νk|π+〉

× 〈π+, xk|π+, x0〉〈π+, x0|Sπ〉∣∣2 (1.3)

for the case of neutrino oscillations and

Pe+π+ =

∣∣∣∣∣∣
∑

k=1,2

〈e+|µ+
k 〉〈µ+

k , xD|µ+
k , xk〉〈µ+

k |π+〉

× 〈π+, xk|π+, x0〉〈π+, x0|Sπ〉∣∣2 (1.4)

for the case of muon oscillations. Pe−π+ is the probabil-
ity to observe the charged current neutrino interaction:
(ν1, ν2)n → e−p following the decay π+ → µ+(ν1, ν2),
while Pe+π+ is the probability to observe the decay µ+ →
e+(ν1, ν2)(ν1, ν2), after the same decay process. In (1.3)
and (1.4) |νk〉, k = 1, 2 are neutrino mass eigenstates
while |µ+

k 〉, k = 1, 2 are the corresponding recoil muon
states from pion decay. 〈νk|π+〉, 〈µ+

k |π+〉 and 〈e+|µ+
k 〉

denote invariant decay amplitudes, 〈e−|νk〉 is the invari-
ant amplitude of the charged current neutrino interaction,
〈p, x2|p, x1〉 is the invariant space-time propagator of par-
ticle p = ν, µ, π between the space-time points x1 and x2
and 〈π+, x0|Sπ〉 is an invariant amplitude describing the
production of the π+ by the source Sπ and its space-time
propagation to the space-time point x0. An important fea-
ture of the amplitudes appearing in (1.3) and (1.4) is that
they are completely defined in terms of the physical neu-
trino mass eigenstate wavefunctions |νk〉. This point will
be further discussed in Sect. 5 below.

The difference of the approach used in the present pa-
per to previous calculations presented in the literature can
be seen immediately on inspection of (1.3) and (1.4). The
initial state6 is a pion at space-time point x0, the final
state an e− or e+ produced at space-time point xD. These
are unique points, for any given event and do not depend
in any way on the masses of the unobserved neutrino eigen-
states propagating from xk to xD in (1.3). On the other
hand the (unobserved) space-time points xk at which the
neutrinos and muons are produced do depend on k. In-
deed, because of the different velocities of the propagat-
ing neutrino eigenstates, only in this case can both neutri-
nos and muons (representing alternative classical histories
of the decaying pion) both arrive simultaneously at the
unique point xD where the neutrino interaction occurs
(1.3) or the muon decays (1.4).

The crucial point in the above discussion is that the de-
caying pion, via the different path amplitudes in (1.3) and

5 In (1.3) and (1.4) an additional summation over unobserved
states, with different physical masses of the decay muon, is
omitted for simplicity. See (2.1) and (2.35) below.

6 The pion production and propagation amplitude
〈π+, x0|Sπ〉 contributes only a multiplicative constant to
the transition probabilites. The initial state can then just as
well be defined as “pion at x0”, rather than |Sπ〉. This is done
in the calculations presented in Sect. 2 below.

(1.4), interferes with itself. To modify very slightly Dirac’s
famous statement7: “Each pion then interferes only with
itself. Interference between two different pions never oc-
curs”.

Because of the different possible decay times of the
pion in the two interfering path amplitudes, the pion prop-
agators 〈π+, xk|π+, x0〉 in (1.3) and (1.4) above give im-
portant contributions to the interference phase. To the
author’s best knowledge, this effect has not been taken
into account in any previously published calculation of
neutrino oscillations.

The results found for the oscillation phase are, for pion
decays at rest

φν,π
12 = φµ,π

12 =
2mπm

2
µ∆m

2L

(m2
π −m2

µ)2
(1.5)

and for pion decays in flight

φν,π
12 =

m2
µ∆m

2L

(m2
π −m2

µ)Eν cos θν
, (1.6)

φµ,π
12 =

2m2
µ∆m

2(m2
µEπ −m2

πEµ)L
(m2

π −m2
µ)2E2

µ cos θµ
, (1.7)

where

∆m2 ≡ m2
1 −m2

2.

The superscripts indicate the particles whose propagators
contribute to the interference phase. Also Eπ, Eν and Eµ

are the energies of the parent π and the decay ν and µ
and θν , θµ the angles between the pion and the neutrino,
muon flight directions. In (1.5) to (1.7) terms of order m4

1,
m4

2 and higher are neglected, and in (1.6) and (1.7) ultra-
relativistic kinematics with Eπ,µ � mπ,µ is assumed. For-
mulae for the oscillation phase of neutrino oscillations fol-
lowing muon decays or nuclear β decays at rest, calculated
in a similar manner to (1.5), are given in Sect. 3 below.

A brief comment is now made on the generality and
the covariant nature of the calculations presented in this
paper. Although the fundamental formula (1.2) is valid in
both relativistic and non-relativistic quantum mechanics,
it was developed in detail by Feynman [7,9] only for the
non-relativistic case. For the conditions of the calculations
performed in the present paper (propagation of particles
in free space) the invariant space-time propagator can ei-
ther be derived (for fermions) from the Dirac equation, as
originally done by Feynman [12] or, more generally, from
the covariant Feynman path integral for an arbitary mas-
sive particle, as recently done in [13]. The analytical form
of the propagator is

K(xf , xi;m) �
(
m2

4πis

)
H

(2)
1 (ims), (1.8)

where8

s =
√

(xf − xi)2

7 “Each photon then interferes only with itself. Interference
between two different photons never occurs” [11].

8 The metric for four-vector products is time-like.
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and H
(2)
1 is a first order Hankel function of the second

kind, in agreement with [12].
In the asymptotic region where s � m−1, or for the

propagation of on-shell particles [13], the Hankel func-
tion reduces to an exponential and yields the configura-
tion space propagator � exp(−ims) of (2.11) below. It
is also shown in [13] that energy and momentum is ex-
actly conserved in the interactions and decays of all such
“asymptotically propagating” particles. The use of quasi-
classical particle trajectories and the requirement of exact
energy-momentum conservation are crucial ingredients of
the calculations presented below.

The structure of the paper is as follows. In the follow-
ing section the case of neutrino or muon oscillations follow-
ing pion decay at rest is treated. Full account is taken of
the momentum wave packets of the propagating neutrinos
and muons resulting from the Breit–Wigner amplitudes
describing the distributions of the physical masses of the
decaying pion and daughter muon. The corresponding os-
cillation damping corrections and phase shifts are found to
be very small, indicating that the quasi-classical (constant
velocity) approximation used to describe the neutrino and
muon trajectories is a very good one. The incoherent ef-
fects of random thermal motion of the source pion and of
finite source and detector sizes on the oscillation probabil-
ities and the oscillation phases are also calculated. These
corrections are found to be small in typical experiments,
but much larger than those generated by the coherent mo-
mentum wave packets. In Sect. 3, formulae are derived to
describe neutrino oscillations following muon decay at rest
or the β-decay of radioactive nuclei. These are written
down by direct analogy with those derived in the previous
section for pion decay at rest. In Sect. 4, the case of neu-
trino and muon oscillations following pion decay in flight
is treated. In this case the two-dimensional spatial geom-
etry of the particle trajectories must be related to the
decay kinematics of the production process. Due to the
non-applicability of the ultra-relativistic approximation to
the kinematics of the muon in the pion rest frame, the cal-
culation, although straightforward, is rather tedious and
lengthy for the case of muon oscillations, so the details
are relegated to an appendix. Finally, in Sect. 5, previ-
ous treatments in the literature of the quantum mechanics
of neutrino and muon oscillations are compared with the
method and results of the present paper, and the appli-
cation of the Feynman path amplitude method to heavy
quark flavour oscillations and atomic physics experiments
is briefly mentioned.

2 Neutrino and muon oscillations
following pion decay at rest

To understand clearly the different physical hypotheses
and approximations underlying the calculation of the par-
ticle oscillation effects it is convenient to analyse a precise
experiment. This ideal experiment is, however, very simi-
lar to LNSD [14] and KARMEN [15] except that neutrinos
are produced from pion, rather than muon, decay at rest.

a)

CA CB

π+

(π+)

(π+)

(n) p

L

T

e−

µ1 ν1

ν1 ,ν2

µ2

xi xf

ν2

D
t0

t1

t2

tD

lD

b)

c)

d)

Fig. 1. The space-time description of an experiment in which
neutrinos produced in the processes π+ → µ+(ν1, ν2) are de-
tected at distance L, via the processes (ν1, ν2)n → e−p. In a
a π+ comes to rest in the stopping target T at time t0. The
pion, at rest at time t0, constitutes the initial state for the
path amplitudes. In b and c are shown two alternative classi-
cal histories for the π+; in b, [c] the pion decays into the mass
eigenstate |ν1〉, [|ν2〉] at times t1, [t2]. If m1 > m2, and for
suitable values of t1 and t2 (t2 > t1), the two classical histories
may correspond to a common final state, shown in (d) where
the neutrino interaction (ν1, ν2)n → e−p occurs at time tD.
As the initial and final states of the two classical histories are
the same, the corresponding path amplitudes must be added
coherently, as in (1.2), to calculate the probability of the whole
process

The different space-time events that must be consid-
ered in order to construct the probability amplitudes for
the case of neutrino oscillations following pion decay at
rest are shown in Fig. 1. A π+ passes through the counter
CA, where the time t0 is recorded, and comes to rest in a
thin stopping target T (Fig. 1a). For simplicity, the case
of only two neutrino mass eigenstates ν1 and ν2 of masses
m1 and m2 (m1 > m2) is considered. The pion at rest
constitutes the initial state of the quantum mechanical
probability amplitudes. The final state is an e−p system
produced, at time tD, via the process (ν1, ν2)n → e−p at
a distance L from the decaying π+ (Fig. 1d). Two differ-
ent physical processes may produce the observed e−p final
state, as shown in Fig. 1b,c, where the pion decays either
at time t1 into ν1 or at time t2 into ν2. The probability
amplitudes for these processes are, up to an arbitary nor-
malisation constant, and neglecting solid angle factors in
the propagators:
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Ai =
∫

〈e−p|TR|nνi〉UeiD(xf − xi, tD − ti,mi)

×BW (Wµ(i),mµ, Γµ)

× Uiµ〈νiµ
+|TR|π+〉e− Γπ

2 (ti−t0)D(0, ti − t0,mπ)
×BW (Wπ,mπ, Γπ)dWµ(i), i = 1, 2. (2.1)

Note that following the conventional “fi” (final, initial)
ordering of the indices of matrix elements in quantum
mechanics, the path amplitude is written from right to
left in order of increasing time. This ensures also correct
matching of “bra” and “ket” symbols in the amplitudes.
In (2.1), 〈e−p|TR|nνi〉, 〈νiµ

+|TR|π+〉 are “reduced” in-
variant amplitudes of the ν charged current scattering
and pion decay processes, respectively, BW (Wµ(i),mµ,
Γµ) and BW (Wπ,mπ, Γπ) are relativistic Breit–Wigner
amplitudes, Uei and Uiµ are elements of the unitary
Maki–Nagagawa–Sakata (MNS) matrix [16], Uαi, describ-
ing the charged current coupling of a charged lepton, α
(α = e, µ, τ), to the neutrino mass eigenstate i. The re-
duced invariant amplitudes are defined by factoring out
the MNS matrix element from the amplitude for the pro-
cess. For example: 〈e−p|T |nνi〉 = Uei〈e−p|TR|nνi〉. Since
the purely kinematical effects of the non-vanishing neu-
trino masses are expected to be very small, the reduced
matrix elements may be assumed to be lepton flavour inde-
pendent: 〈e−p|TR|nνi〉 � 〈e−p|TR|nν0〉 where ν0 denotes
a massless neutrino. In (2.1), D is the Lorentz-invariant
configuration space propagator [13,12] of the pion or neu-
trino. The pole masses and total decay widths of the pion
and muon are denoted by mπ, Γπ and mµ, Γµ respectively.
For simplicity, phase space factors accounting for different
observed final states are omitted in (2.1) and subsequent
formulae.

Because the amplitudes and propagators in (2.1) are
calculated using relativistic quantum field theory, and the
neutrinos propagate over macroscopic distances, it is a
good approximation, as already discussed in the previous
section, to assume that there is exact energy-momentum
conservation in the pion decay process and that the neu-
trinos are on their mass shells, i.e. p2

i = m2
i , where pi is the

neutrino energy-momentum four-vector. In these circum-
stances the neutrino propagators correspond to classical,
rectilinear, particle trajectories.

The pion and muon are unstable particles whose phys-
ical masses Wπ and Wµ(i) differ from the pole masses mπ

and mµ appearing in the Breit–Wigner amplitudes and
covariant space-time propagators in (2.1). The neutrino
momentum Pi will depend on these physical masses ac-
cording to the relation

Pi =

[
[W 2

π − (mi +Wµ(i))2][W 2
π − (mi −Wµ(i))2]

] 1
2

2Wπ
(2.2)

Note that, because the initial state pion is the same
in the two path amplitudes in (2.1) Wπ does not depend
on the neutrino mass index i. However, since the pion
decays resulting in the production of ν1 and ν2 are inde-
pendent physical processes, the physical masses of the un-
observed muons, Wµ(i), i = 1, 2, recoiling against the two

neutrino mass eigenstates are not, in general, the same.
In the following kinematical calculations sufficient accu-
racy is achieved by retaining only quadratic terms in the
neutrino masses and terms linear in the small quantities
δπ = Wπ −mπ, δi = Wµ(i)−mµ. This allows simplification
of the relativistic Breit–Wigner amplitudes:

BW (W,m,Γ ) ≡ Γm

W 2 −m2 + imΓ

=
Γm

δ(2m+ δ) + imΓ

=
Γ

2
(
δ + iΓ

2

) +O(δ2)

≡ BW (δ, Γ ) +O(δ2). (2.3)

Developing (2.2) up to first order in m2
i , δi and δπ yields

the relation

Pi = P0

[
1 − m2

i (m
2
π +m2

µ)
(m2

π −m2
µ)2

+
δπ
mπ

(m2
π +m2

µ)
(m2

π −m2
µ)

− 2δimµ

m2
π −m2

µ

+
δπm

2
i (m

2
π +m2

µ)
mπ(m2

π −m2
µ)2

]
, (2.4)

where

P0 =
m2

π −m2
µ

2mπ
= 29.8 MeV. (2.5)

The term � δπm
2
i which is also included in (2.4) gives a

negligible O(m4
i ) contribution to the neutrino oscillation

formula. For muon oscillations, however, it gives a term of
O(m2

i ) in the interference term, as discussed below. Simi-
larly, the exact formula for the neutrino energy

Ei =
W 2

π −W 2
µ(i) +m2

i

2Wπ
(2.6)

in combination with (2.4) gives for the neutrino velocity

vi =
Pi

Ei
= 1 − m2

i

2P 2
0

[
1 − 2δπ(m2

π +m2
µ)

mπ(m2
π −m2

µ)
+

4δimµ

m2
π −m2

µ

]

+O(m4
i , δ

2
π, δ

2
i ). (2.7)

This formula will be used below to calculate the neutrino
times-of-flight tfli , i = 1, 2.

From the unitarity of the MNS matrix, the elements
Uαi may be expressed in terms of a single real angular
parameter θ:

Ue1 = U1e = Uµ2 = U2µ = cos θ, (2.8)
Ue2 = U2e = −Uµ1 = −U1µ = sin θ. (2.9)

The parts of the amplitudes requiring the most careful
discussion are the invariant space-time propagators D, as
it is mainly their treatment that leads to the different re-
sult for the neutrino oscillation phase found in the present
paper, as compared to those having previously appeared
in the literature. In the limit of large time-like separations,
the propagator may be written as [13,12]
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D(∆x,∆t,m) =

(
m

2πi
√

(∆t)2 − (∆x)2

) 3
2

× exp
[
−im

√
(∆t)2 − (∆x)2

]
. (2.10)

D is the amplitude for a particle, originally at a space-time
point (xi, ti), to be found at (xf , tf ) and ∆x ≡ xf − xi,
∆t ≡ tf − ti. In the following, according to the geometry
of the experiment shown in Fig. 1, only one spatial co-
ordinate will be considered (∆x ≡ xf − xi) and only the
exponential factor in (2.10), containing the essential phase
information for particle oscillations will be retained in the
amplitudes. Solid angle correction factors, taken into ac-
count by the factor in large brackets in (2.10), are here
neglected, but are easily included in the final oscillation
formulae. Writing then

D(∆x,∆t,m) � exp
[
−im

√
(∆t)2 − (∆x)2

]
= exp [−im∆τ ]
≡ exp[−i∆φ], (2.11)

it can be seen that the increment in phase of the propaga-
tor, ∆φ, when the particle undergoes the space-time dis-
placement (∆x, ∆t) is a Lorentz-invariant quantity equal
to the product of the particle mass and the increment,
∆τ , of proper time. Using the relativistic time dilatation
formula

∆t = γ∆τ =
E

m
∆τ, (2.12)

and also the relation, corresponding to a classical, recti-
linear, particle trajectory,

∆t =
L

v
=
E

p
L, (2.13)

gives, for the phase increments corresponding to the paths
of the neutrinos and the pion in Fig. 1

∆φν
i = mi∆τi =

m2
i

Ei
∆ti =

m2
i

Pi
L

=
m2

iL

P0

[
1 − δπ

mπ

(m2
π +m2

µ)
(m2

π −m2
µ)

+
2δimµ

m2
π −m2

µ

]
, (2.14)

∆φπ
i = mπ(ti − t0) = mπ(tD − t0) − mπL

vi

= mπ(tD − t0)

−mπL

{
1 +

m2
i

2P 2
0

[
1 − 2δπ

mπ

(m2
π +m2

µ)
(m2

π −m2
µ)

+
4δimµ

m2
π −m2

µ

]}
, (2.15)

where terms of O(m4
i ) and higher are neglected.

Making the substitution ti − t0 → tD − t0 − L/vi in
the exponential damping factor due to the pion lifetime in
(2.1) and using (2.3), (2.11), (2.14) and (2.15), (2.1) may
be written as

Ai =
∫

〈e−p|TR|nν0〉UeiUiµ〈ν0µ+|TR|π+〉

× Γµ

2
eiαiδi(
δi + iΓµ

2

)
× Γπ

2
eiαπ(i)δπ(
δπ + iΓπ

2

)eiφ0− Γπ
2 (tD−t0−tfli )

× exp i
[
m2

i

P0

(
mπ

2P0
− 1
)
L

]
dδi, i = 1, 2, (2.16)

where

φ0 ≡ mπ(L− tD + t0), (2.17)

αi ≡ 4m2
imµmπ(m2

π +m2
µ)L

(m2
π −m2

µ)3
, (2.18)

απ(i) ≡ −2m2
i (m

2
π +m2

µ)2L
(m2

π −m2
µ)3

(2.19)

and

tfli = L

(
1 +

m2
i

2P 2
0

)
+O(m4

i ). (2.20)

In (2.18) and (2.19) imaginary parts of relative size �
Γπ/mπ � 2.0 × 10−16 are neglected.

To perform the integral over δi in (2.16) it is convenient
to approximate the modulus squared of the Breit–Wigner
amplitude by a Gaussian, via the substitution

Γ
2

δ + iΓ
2

=
Γ

2

(
δ − iΓ

2

δ2 + Γ 2

4

)

→ 2
Γ

(
δ − i

Γ

2

)
exp
(

−3δ2

Γ 2

)
, (2.21)

where the width of the Gaussian is chosen so that it has
approximately the same full width at half maximum, Γ , as
the Breit–Wigner function. After the substitution (2.21),
the integral over δi in (2.16) is easily evaluated by a change
of variable to “complete the square” in the argument of
the exponential, with the result

Ii =
2
Γµ

∫ ∞

−∞

(
δi − i

Γµ

2

)
exp
(

−3δ2i
Γ 2

µ

+ iαiδi

)
dδi

= i
√

π
3
Γµ exp

(
−α2

iΓ
2
µ

12

)[
αiΓµ

3
− 1
]

; (2.22)

(2.18) gives, for αi, the numerical value

αi = 3.1 × 1014
(
mi

mπ

)2

L(m) MeV−1. (2.23)

For the typical physically interesting values (see below) of
mi = 1 eV and L = 30 m, αi takes the value 0.48 MeV−1,
so that

αiΓµ = 0.48 × 3.00 × 10−16 = 1.4 × 10−16

Then, to very good accuracy, I1 = I2 = −i
√

π/3Γµ, inde-
pendently of the neutrino mass. It follows that for neutrino
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oscillations, the muon mass dependence of the amplitudes
may be neglected for any physically interesting values of
mi and L.

From (2.16) and (2.22) the probability to observe the
reactions (ν1, ν2)n → e−p at distance L from the pion
decay point and at time tD is

P (e−p|L, tD)
= |A1 +A2|2

=
πΓ 2

µ

3
|〈e−p|TR|nν0〉|2|〈ν0µ+|TR|π+〉|2

× sin2 θ cos2 θe−Γπ(tD−t0) Γ 2
π

4
(
δ2π + Γ 2

π

4

)
×
{

eΓπtfl1 + eΓπtfl2

− 2eΓπ
(tfl1 +tfl2 )

2 Re exp i
[
∆m2

P0

(
mπ

2P0
− 1
)
L

+ [απ(1) − απ(2)]δπ

]}
. (2.24)

The time-dependent exponential factors in the curly
brackets of (2.24) are easily understood. If m1 > m2 then
tfl1 > tfl2 . This implies that the neutrino of mass m1 re-
sults from an earlier decay than the neutrino of mass m2,
in order to be detected at the same time. Because of the
exponential decrease with time of the pion decay ampli-
tude, the contribution to the probability of the squared
amplitude for the neutrino of mass m1 is larger. The in-
terference term resulting from the product of the decay
amplitudes of the two neutrinos of different mass has an
exponential factor that is the harmonic mean of those of
the squared amplitudes for each neutrino mass eigenstate
and so is also suppressed relative to the squared ampli-
tude for the neutrino of mass m1. The integral over the
physical pion mass is readily performed by replacing the
Breit–Wigner function by a Gaussian as in (2.21). This
leads to an overall multiplicative constant

√
π/3Γπ and a

factor

F ν(Wπ) = exp[−(απ(1) − απ(2))2Γ 2
π/12] (2.25)

multiplying the interference term. For ∆m2 = (1 eV)2 and
L = 30 m the numerical value of this factor is exp(−1.3 ×
10−29). This tiny correction is neglected in the following
equations.

Integrating over tD gives the average probability to
observe the e−p final state at distance L:

P (e−p|L)

=
π 3

2Γ 2
µ

3
√

3
|〈e−p|TR|nν0〉|2|〈ν0µ+|TR|π+〉|2 sin2 θ cos2 θ

×
{

1 − exp
[
− Γπm

2
π∆m

2

(m2
π −m2

µ)2
L

]
cos

2mπm
2
µ∆m

2

(m2
π −m2

µ)2
L

}
,

(2.26)

where all kinematical quantities are expressed in terms of
∆m2, mπ and mµ. Note that the minimum value of tD is

t0 + tfl1 , t0 + tfl2 and t0 + tfl1 for the squared amplitude terms
of neutrinos of mass m1, m2 and the interference term, re-
spectively. On integrating over tD, the squared amplitude
terms give equal contributions, the larger amplitude for
mass m1 being exactly compensated by a smaller range of
integration. The exponential damping factor in the inter-
ference term in (2.26) is derived using the relations

tfl1 − tfl2 =
(

1
v1(ν)

− 1
v2(ν)

)
L

� (v2(ν) − v1(ν))L (2.27)

and

vi(ν) = 1 − m2
i

2P 2
0

+O(m4
i ), i = 1, 2, (2.28)

to obtain

tfl1 − tfl2 =
(m2

1 −m2
2)L

2P 2
0

=
∆m2L

2P 2
0

(2.29)

The damping factor arises because the difference in the
times-of-flight of the two neutrino paths is limited by the
pion lifetime. It will be seen below, however, that for dis-
tances L of practical interest for the observation of neu-
trino oscillations, the damping effect is tiny.

The part of the oscillation phase in (2.24) originat-
ing from the neutrino propagators (the term associated
with the number “1” within the large curved brackets) dif-
fers by a factor two from the corresponding expression in
the standard formula. The contribution to the oscillation
phase of the propagator of the decaying pion (the term
associated with mπ/(2P0) in the large curved brackets of
(2.24)) has not been taken into account in any published
calculation known to the author of the present paper. The
oscillation phase in (2.26) is 2m2

µ/(m
2
π−m2

µ) = 2.685 times
larger than that given by the standard formula (1.1). For
L = 30 m, as in the LNSD experiment, the first oscilla-
tion maximum occurs for ∆m2 = 0.46 (eV)2. Denoting by
φν,π

12 the phase of the cosine interference term in (2.26),
the pion lifetime damping factor can be written as

F ν(Γπ) = exp
(

−Γπ
mπ

2m2
µ

φν,π
12

)
= exp(−1.5810−16φν,π

12 ), (2.30)

so the damping effect is vanishingly small when φν,π
12 � 1.

The oscillation formula (2.26) is calculated on the as-
sumption that the decaying pion is at rest at the precisely
defined position xi. In fact, the positive pion does not bind
with the atoms of the target, but will rather undergo ran-
dom thermal motion. This has three effects: an uncertainy
in the value of xi, a Doppler shift of the neutrino energy
and a time dilatation correction factor of 1/γπ in (2.15)
for the pion phase increment. Assuming that the target
is at room temperature (T = 270 K), the mean kinetic
energy of 3kT/2 corresponds to a mean pion momentum
of 2.6 × 10−3 MeV and a mean velocity of � 5.6 km/s.
The pion will move, in one mean lifetime (2.6 × 10−8 s),
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a distance of 146µm. This is negligible as compared to L
(typically ≥ 30 m) and so (2.26) requires no modification
to account for this effect.

The correction factor due to the Doppler effect and
time dilatation is readily calculated on the assumption of a
Maxwell–Boltzmann distribution of the pion momentum:

dN
dpπ

� p2
π exp

(
−p2

π

p2
π

)
. (2.31)

Here pπ =
√

2kTmπ = 2.64 × 10−3 MeV. Details of the
calculation are given in Appendix A. The interference term
in (2.26) is modified by a damping factor:

F ν(Dop) = exp

{
−
(
pπ∆m

2

2mπP0

[
mπ

P0
− 1
]
L

)2
}
, (2.32)

while the argument of the cosine term acquires an addi-
tional phase factor:

φν(Dop) =
3
4

(
pπ

mπ

)2
∆m2

P0

[
3mπ

2P0
− 1
]
L. (2.33)

For φν,π
12 = 1, F ν(Dop) = 1 − 6.7 × 10−10 and φν(Dop) =

1.2 × 10−9.
If the target in which the pion stops is of thickness

�T , then the effect of different stopping points of the π
(assumed uniformly distributed) is to multiply the inter-
ference term in (2.26) by the factor

F ν
Targ =

(m2
π −m2

µ)2

mπm2
µ∆m

2�T
sin

(
mπm

2
µ∆m

2�T

(m2
π −m2

µ)2

)
. (2.34)

If the position of the neutrino interaction point within the
target has an uncertainy of ±�D/2 a similar correction
factor is found, with the replacement �T → �D in (2.34).
The calculation of this correction factor is also described
in Appendix A.

The ideal experiment, described above, to study neu-
trino oscillations, is easily adapted to the case of oscil-
lations in the decay probability of muons produced by
charged pion decay at rest. As before, the pion stops in
the target T at time t0 (see Fig. 2a). At time t1 the pion
decays into ν1 and the corresponding recoil muon (µ1),
whose passage is recorded in the counter CB (Fig. 2b).
Similarly, a decay into ν2 and µ2 may occur at time t2
(Fig. 2c). With a suitable choice of the times t1 and t2,
such that muons following the alternative paths both ar-
rive at the same time tD at the point xf , interference
occurs between the path amplitudes when muon decay
occurs at the space-time point (xf , tD) in the detector D
(Fig. 2d). The probability for two classical trajectories to
arrive at exactly the same space-time point of course van-
ishes. The correct way to consider the quantum mechani-
cal calculation is rather to ask given that the muon decay
occurs at the point (x, tD), does the muon recoil against
ν1 or ν2? If these two possiblities are not distinguished by
the measurement of the decay process, the corresponding
probability amplitudes (not probabilities) must be added

a)

CA CB

π+

(π+)

(π+)

T

e+

ν1 µ1

µ1 ,µ2

ν2 µ2

νµ

νe

–

t0

t1

t2

tD

b)

c)

d)

Fig. 2. The space-time description of an experiment in which
muons produced in the processes π+ → µ+(ν1, ν2) are detected
at distance L, via decay processes µ+ → e+(ν1, ν2)(ν1, ν2),
denoted, conventionally, as “µ+ → e+νeν̄µ” As in Fig. 1b and
c show alternative classical histories of the stopped π+. If m1 >
m2 the velocity of µ1 is less than that of µ2, and provided that
t2 > t1, the muons may arrive at the same spatial point at
the same time tD in both classical histories. If the muons are
detected at this space-time point in any way (not necessarily
by the observation of muon decay as shown in c) interference
between the corresponding path amplitudes occurs, according
to (1.2), just as in the case of neutrino detection

in the calculation of the probability of the observed decay
process.

The path amplitudes corresponding to muons recoiling
against neutrinos of mass m1 and m2 are

A
(µ)
(kl)i

=
∫

〈e+νkνl|T |µ+〉e− Γµv
µ
i

2γ
µ
i

L
D(xf − xi, tD − ti,mµ)

×BW (Wµ(i),mµ, Γµ)Uiµ〈νiµ
+|TR|π+〉

× e− Γπ
2 (ti−t0)D(0,ti−t0,mπ)BW (Wπ,mπ,Γπ)dWµ(i),

i = 1, 2. (2.35)

The various factors in these equations are defined, mutatis
mutandis, as in (2.1).

With the same approximations concerning the neu-
trino masses and the physical pion and muon masses
as those made above, the velocity of the muon recoiling
against the neutrino mass eigenstate νi is
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vµ
i = vµ

0

[
1 − 4m2

im
2
πm

2
µ

(m2
π −m2

µ)2(m2
π +m2

µ)
+

4δπmπm
2
µ

m4
π −m4

µ

− 4δimµm
2
π

m4
π −m4

µ

− 8δπm2
im

3
πm

2
µ(3m2

µ −m2
π)

(m4
π −m4

µ)2(m2
π −m2

µ)

]
,

(2.36)

where

vµ
0 =

m2
π −m2

µ

m2
π +m2

µ

. (2.37)

Comparing with (2.7), it can be seen that for the muon
case, unlike that where neutrino interactions are observed,
there are pion and muon mass dependent correction terms
that are independent of the neutrino masses, implying a
velocity smearing effect due to the physical pion and muon
masses that is � m2

π/m
2
i larger than for the case of neu-

trino oscillations.
The phase increments corresponding to the paths of

the muons and the pion in Fig. 2 are, using (2.4)9 and
(2.12)–(2.15) and (2.36)

∆φµ
i =

m2
µL

Pµ
i

=
m2

µL

P0

[
1 +

m2
iE

µ
0

2mπP 2
0

− δπ
mπ

(m2
π +m2

µ)
(m2

π −m2
µ)

+
2δimµ

m2
π −m2

µ

− δπm
2
i

mπ

(m2
π +m2

µ)
(m2

π −m2
µ)2

]
, (2.38)

∆φ
π(µ)
i = mπ(ti − t0) = mπ(tD − t0) − mπL

vµ
i

= mπ(tD − t0)

− mπL

vµ
0

[
1 +

4m2
im

2
πm

2
µ

(m2
π −m2

µ)2(m2
π +m2

µ)

− 4δπmπm
2
µ

m4
π −m4

µ

+
4δimµm

2
π

m4
π −m4

µ

+
8δπm2

im
3
πm

2
µ(3m2

µ −m2
π)

(m4
π −m4

µ)2(m2
π −m2

µ)

]
, (2.39)

where

Eµ
0 =

m2
π +m2

µ

2mπ
. (2.40)

Using (2.11), (2.38) and (2.39) to re-write the space-
time propagators in (2.35), as well as (2.3) for the Breit–
Wigner amplitudes, gives

A
(µ)
(kl)i =

∫
〈e+νkνl|T |µ+〉e− Γµv

µ
0 L

2γ
µ
0 Uiµ〈νiµ

+|T |π+〉

× Γµ

2
eiαµδi(
δi + iΓµ

2

) Γπ

2
eiαµ

π(i)δπ(
δπ + iΓπ

2

)
9 Note that in the pion rest frame Pi = P µ

i .

× eiφµ
0 − Γπ

2 (tD−t0−tflµ(i))

× exp i

[
m2

µm
2
i

2P 3
0

(
1 − Eµ

0

mπ

)
L

]
dδi,

i = 1, 2, (2.41)

where

φµ
0 ≡ mπ

(
L

vµ
0

− tD + t0

)
− m2

µL

P0
, (2.42)

αµ ≡ 4mµmπL

m2
π −m2

µ

, (2.43)

αµ
π(i) ≡ − 2m2

µL

m2
π −m2

µ

×
[
1 − m2

i (5m
6
π − 11m4

πm
2
µ −m2

πm
4
µ −m6

µ)
(m4

π −m4
µ)(m2

π −m2
µ)2

]

(2.44)
and

tflµ(i) = L

(
1
vµ
0

+
m2

im
2
µ

2mπP 3
0

)
, (2.45)

where, as in (2.18) and (2.19), imaginary parts of order
Γπ/mπ are neglected. Making the substitution (2.21) and
performing the integral over δi according to (2.22), the
following formula is found for the probability for muon
decay at distance L and time tD:

P (e+νkνl|L, tD) = |A(µ)
(kl)1 +A

(µ)
(kl)2|2

=
πΓ 2

µ

3
e− (αµΓµ)2

6

[
1 − αµΓµ

3

]2
|〈e+νkνl|T |µ+〉|2e− Γµv

µ
0

γ
µ
0

L

× |〈ν0µ+|TR|π+〉|2e−Γπ(tD−t0) Γ 2
π

4
(
δ2π + Γ 2

π

4

)
×
{

sin2 θeΓπtf
µ(1) + cos2 θeΓπtf

µ(2)

− 2 sin θ cos θe
Γπ
2 (tf

µ(1)+tf
µ(2))

× Re exp i
[
m2

µ∆m
2

2P 3
0

(
1 − Eµ

0

mπ

)
L

+ [αµ
π(1) − αµ

π(2)]δπ

]}
, (2.46)

where the effect of the non-zero neutrino masses are
neglected in the reduced pion decay amplitude so that
〈νiµ

+|TR|π+〉 � 〈ν0µ+|TR|π+〉 and this amplitude is a
common factor in both path amplitudes. The muon path
difference yields the term associated with Eµ

0 /mπ in the
interference phase in (2.46) while the pion path is asso-
ciated with the number “1” in the large curved brackets.
The numerical value of the damping factor:

Fµ(Wµ) = exp
[
− (αµΓµ)2

6

] [
1 − αµΓµ

3

]2
, (2.47)

resulting from the integral over the physical muon mass
is, for L = 30 m, 0.774, so, unlike for the case of neutrino
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oscillations, the correction is by no means negligible. This
is because, in the muon oscillation case, the leading term
of αµ is not proportional to the neutrino mass squared.
The non-leading terms proportional to m2

i have been ne-
glected in (2.44). This correction however effects only the
overall normalisation of the oscillation formula, not the
functional dependence on L arising from the interference
term. Integrating over δπ using (2.21) and (2.22), as well
as over tD, gives the probability of muon decay, into the fi-
nal state e+νkνl, at distance L, from the production point,
where all kinematical quantities are expressed in terms of
∆m2, mπ and mµ:

P (e+νkνl|L)

=
π 3

2Γ 2
µ

3
√

3
exp

[
−8

3

(
Γµmµmπ

m2
π −m2

µ

L

)2
] [

1 − 4
3
Γµmµmπ

m2
π −m2

µ

L

]2

× |〈e+νkνl|T |µ+〉|2 exp

[
−2Γµmπmµ(m2

π −m2
µ)

(m2
π +m2

µ)3
L

]

× |〈ν0µ+|TR|π+〉|2

×
{

1 − sin 2θ exp

[
−2Γπm

2
πm

2
µ∆m

2

(m2
π −m2

µ)3
L

]

× cos
2mπm

2
µ∆m

2

(m2
π −m2

µ)2
L

}
. (2.48)

In this expression the correction due to the damping factor
of the interference term

Fµ(Wπ) = exp[−(αµ
π(1) − αµ

π(2))2Γ 2
π/12] (2.49)

arising from the integral over the physical pion mass has
been neglected. For ∆m2 = (1 eV)2 and L = 30 m the
numerical value of this factor is exp(−5.2 × 10−30). De-
noting by φµ,π

12 the argument of the cosine in (2.48), the
exponential damping factor due to the pion lifetime may
be written as

Fµ(Γπ) = exp
(

− Γπmπ

(m2
π −m2

π)
φµ,π

12

)
. (2.50)

For φµ,π
12 = 1, Fµ(Γπ) = exp[−4.4 × 10−16] so, as in the

neutrino oscillation case, the pion lifetime damping of the
interference term is very small.

Introducing the reduced muon decay amplitude

〈e+νkνl|T |µ+〉 = UekUµl〈e+νkνl|TR|µ+〉
� UekUµl〈e+ν0ν0|TR|µ+〉, (2.51)

the total muon decay probability is given by the incoherent
sum over the four possible final states containing massive
neutrinos:

P (e+νν|L) =
2∑

k=1

2∑
l=1

P (e+νkνl|L)

=
2∑

k=1

|Uek|2
2∑

l=1

|Uµl|2P (e+ν0ν0|L)

= P (e+ν0ν0|L), (2.52)

where the unitarity of the MNS matrix has been used.
P (e+ν0ν0|L) is given by the replacement of 〈e+νkνl|T |µ+〉
by 〈e+ν0ν0|TR|µ+〉 in (2.48). Equation (2.52) shows that
the muon decay width is independent of the values of the
MNS matrix elements.

Corrections due to time dilatation and the Doppler
effect are calculated in a similar way to the neutrino os-
cillation case with the results (see Appendix A)

Fµ(Dop) = exp


−

(
pπm

2
µ∆m

2vµ
0

2mπP 3
0

[
3
2

− Eµ
0

mπ

]
L

)2



(2.53)
and

φµ(Dop) =
3
2

(
pπ

mπ

)2 m2
µ∆m

2

P 3
0

[
1 − Eµ

0

2mπ

]
L. (2.54)

As for neutrino oscillations, the corresponding corrections
are very small for oscillation phases of order unity.

The phase of the cosine in the interference term is the
same in neutrino and muon oscillations, as can be seen by
comparing (2.26) and (2.48). It follows that the target or
detector size correction (see (2.34)) is the same in both
cases.

Neutrino and muon oscillations from pion decay at rest
then have an identical oscillation phase for given values of
∆m2 and L. In view of the much larger event rate that
is possible, it is clearly very advantageous in this case
to observe muons rather than neutrinos, since the rate
of neutrino oscillation events is severely limited by the
very small neutrino interaction cross section. In fact, it
not necessary to observe muon decay, as in the example
discussed above. The oscillation formula applies equally
well if the muons are observed10 at the distance L using
any high efficiency detector such as, for example, a scin-
tillation counter. According to (1.2), interference between
the path amplitudes must occur if the muon detection de-
vice does not discriminate muons recoiling against ν1 from
those recoiling against ν2.

3 Neutrino oscillations following muon decay
or beta-decay at rest

The formula describing “νµ → νe neutrino oscilla-
tions”11 following the decay at rest of a µ+, µ+ →
10 Note that, in this case, the final state of the path amplitude
is that of the detection process by which the muon is recorded.
As is the neutrino in neutrino oscillations, the muon itself con-
tributes an unobserved intermediate state in the general path
amplitude formula (1.2)
11 This experiment is also conventionally termed “νe appear-
ance”. As discussed in more detail in Sect. 5 below, “νe” and
“νµ” do not exist, as physical states, if neutrinos are massive
and the MNS matrix is non-diagonal. It is still, however, cur-
rent practice in the literature to use the symbols “νe”, “νµ”
and “ντ” to refer to massive neutrinos. This is still a useful
and meaningful procedure if it is employed only to identify, in



368 J.H. Field: Spatially dependent quantum interference effects in the detection probability of charged leptons

e+(ν1, ν2)(ν1, ν2) is easily derived from the similar for-
mula for π+ decay at rest, (2.25). Because the neutrino
momentum spectrum is continuous, smearing effects due
to the finite muon lifetime may be neglected from the
outset. The phase increment associated with the neu-
trino path is then given by (2.14) with the replacements
P0 → Pν and δπ, δi → 0, where Pν is the antineutrino
momentum. The phase increment of the decaying muon
is given by the same replacements in (2.15) with, in ad-
dition, mπ → mµ and Γπ → Γµ. The formula, analogous
to (2.26), for the time-averaged probability to detect the
process (ν1, ν2)p → e+n at a distance L from the muon
decay point is then

P (e+n, µ|L)

=
|〈e+n|TR|pν0〉|2|〈ν0ν0e

+|TR|µ+〉|2
Γµ

2 sin2 θ cos2 θ

×
{

1 − exp
[
−Γµ∆m

2

4P 2
ν

L

]
cos
[
∆m2

Pν

(
mµ

2Pν
− 1
)
L

]}
.

(3.1)

The standard neutrino oscillation formula, hitherto
used in the analysis of all experiments, has instead the ex-
pression ∆m2L/(2Pν) for the argument of the cosine term
in (3.1). Denoting my ∆m2

S the value of ∆m2 obtained us-
ing the standard formula, and ∆m2

FP that obtained using
the Feynman path (FP) formula (3.1) then

∆m2
FP =

∆m2
S

mµ

Pν
− 2

. (3.2)

For a typical value of Pν of 45 MeV, (3.2) implies that
∆m2

FP � 2.9∆m2
S . Thus the νµ oscillation signal from

µ+ decays at rest reported by the LNSD Collaboration
[14] corresponding to ∆m2

S � 0.5 (eV)2 for sin2 2θ � 0.02
implies ∆m2

FP � 1.5 (eV)2 for a similar mixing angle.
For the case of β-decay:

N(A,Z) → N(A,Z + 1)e−(ν1, ν2).

mπ in the first line of (2.15) is replaced by Eβ , the total
energy release in the β-decay process:

Eβ = MN (A,Z) −MN (A,Z + 1), (3.3)

where MN (A,Z) and MN (A,Z + 1) are the masses of the
parent and daughter nuclei. That the phase advance of an
unstable state, over a time, ∆t, is given by exp(−iE∗∆t)
where E∗ is the excitation energy of the state, is readily
shown by the application of time-dependent perturbation
theory to the Schrödinger equation [17]12. A more intu-
itive derivation of this result has also been given in [18].

a concise manner, the type of charged current interaction by
which the neutrinos are produced or detected, i.e. “ν�” means
neutrinos (actually several, with different generation numbers)
produced together with the charged lepton � or detected by
observation of the charged lepton �. It should not be forgotten
however that only the wavefunctions of the mass eigenstates
νi occur in the amplitudes of standard model processes.
12 See also (20) of Chapt. V of [11]

In the present case, E∗ = Eβ . Omitting the lifetime damp-
ing correction, which is about eight orders of magnitude
smaller than for pion decay, given a typical β-decay life-
time of a few seconds, the time-averaged probability to
detect ν1, ν2 via the process (ν1, ν2)p → e+n, at distance
L from the decay point is given by the formula, derived in
a similar way to (2.26) and (3.1),

P (e+n, β|L)

=
|〈e+n|TR|pν0〉|2|〈e−ν0N(A,Z + 1)|TR|N(A,Z)〉|2

Γβ

×
{

sin4 θ + cos4 θ

+ 2 sin2 θ cos2 θ cos
[
∆m2

Pν

(
Eβ

2Pν
− 1
)
L

]}
, (3.4)

where Γ−1
β = τβ the lifetime of the unstable nucleus

N(A,Z). Until now, all experiments have used the stan-
dard expression ∆m2L/(2Pν) for the neutrino oscillation
phase. The values of ∆m2 found should be scaled by the
factor (Eβ/Pν −2)−1, suitably averaged over Pν , to obtain
the ∆m2 given by the Feynman path formula (3.4).

4 Neutrino and muon oscillations
following pion decay in flight

In this section, the decays in flight of a π+ beam with en-
ergy Eπ � mπ into µ+(ν1, ν2) are considered. As the anal-
ysis of the effects of the physical pion and muon masses
has been shown above to give negligible corrections to the
L dependence of the oscillation formulae, for the case of
decays at rest, such effects will be neglected in this dis-
cussion of in-flight decays. The overall structure of the
path amplitudes for neutrinos and muons is the same as
for decays at rest (see (2.1) and (2.35)). However, for in-
flight decays, in order to calculate the interfering paths
originating at different and terminating at common space-
time points, the two-dimensional spatial geometry of the
problem must be properly taken into account.

In Fig. 3 a pion decays at A into the 1 mass eigenstate,
the neutrino being emitted at an angle θ1 in the lab sys-
tem relative to the pion flight direction. If m1 > m2 a
later pion decay into the 2 mass eigenstate at the angle
θ1 + δ may give a path such that both eigenstates arrive
at the point B at the same time. A neutrino interaction
(ν1, ν2)n → e−p occurring at this space-time point will
then be sensitive to interference between amplitudes cor-
responding to the paths AB and ACB. The geometry of
the triangle ABC and the condition that the 1 and 2 neu-
trino mass eigenstates arrive at B at the same time gives
the following condition on their velocities:

v1(ν)
v2(ν)

=
sin θ2
sin θ1

− v1(ν)
vπ

sin(θ2 − θ1)
sin θ1

. (4.1)

Expanding to first order in the small quantity δ = θ2 −θ1,
rearranging, and neglecting terms of O(m4

i ), gives

v2(ν) − v1(ν) =
∆m2

2E2
ν

=
δ

sin θ1

[
1 − vπ cos θ1

vπ

]
, (4.2)
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π

δ

θ1 θ2CA

B

L

ν2(µ2)

ν1(µ1)

Fig. 3. Two-dimensional spatial geometry for the observation
of neutrino or muon oscillations following pion decay in flight.
Four possible classical histories of a pion, originally at the point
A, are shown. In the first two, the pion decays either into the
mass eigenstate |ν1〉, at point A or into |ν2〉 at point C. If
m1 > m2, and for suitable values of the angles θ1 and θ2, the
neutrinos may arrive at the point B at the same time. If a neu-
trino detection event, such as (ν1, ν2)n → e−p, then occurs at
B at this time, the paths AB and ACB will be indistinguish-
able so that the corresponding amplitudes must be superposed,
as in (1.2), to calculate the probability of the overall decay-
propagation-detection process. The third and fourth classical
histories are similar, except that the neutrino mass eigenstates
are replaced by the corresponding recoil muons. The muons
in the different histories may arrive at point B, at the same
time, leading to interference and “muon oscillations” if they
are detected there

where the relation

vi(ν) = 1 − m2
i

2E2
ν

+O(m4
i ) (4.3)

has been used. Rearranging (4.2):

δ =
∆m2

2E2
ν

[
vπ sin θ1

1 − vπ cos θ1

]
. (4.4)

The difference in phase of the neutrino paths AB and CB
is (see (2.14))

φν
12 =

m2
1AB

P1
− m2

2CB

P2
+O(m4

1,m
4
2). (4.5)

Since the angle δ is � ∆m2, the difference between AB
and CB is of the same order, and so

φν
12 =

∆m2L

cos θ1Eν
+O(m4

1,m
4
2), (4.6)

where P1 � P2 � Eν , the measured neutrino energy. From
the geometry of the triangle ABC:

AC
sin δ

=
AB

sin θ2
=

L

cos θ1 sin(θ1 + δ)
. (4.7)

So, to first order in δ, and using (4.4)

AC ≡ ∆xπ =
Lδ

cos θ1 sin θ1

=
∆m2L

2E2
ν cos θ1

vπ

(1 − vπ cos θ1)
(4.8)

and

∆tπ =
∆xπ

vπ
=

∆m2L

2E2
ν cos θ1

1
(1 − vπ cos θ1)

. (4.9)

Equations (4.8) and (4.9) give for the phase increment of
the pion path

∆φπ = mπ(τ2 − τ1) = mπ∆τ = Eπ∆tπ − pπ∆xπ

=
∆m2EπL

2E2
ν cos θ1

(1 − v2
π)

(1 − vπ cos θ1)
. (4.10)

In (4.10), the Lorentz-invariant character of the propaga-
tor phase is used. Setting cos θ1 = 1 and vπ = 0 gives
for ∆φπ a prediction consistent with that obtained from
(2.15). Equation (4.6) and (4.10) give for the total phase
difference of the paths AB, ACB

φν,π
12 = ∆φAB −∆φACB = φν

12 −∆φπ

=
∆m2L

cos θ1Eν

[
1 − Eπ

2Eν

(1 − v2
π)

(1 − vπ cos θ1)

]
. (4.11)

Using the expressions, valid in the ultra-relativistic (UR)
limit where vπ � 1

1 − vπ cos θ1 =
m2

π

E2
π

1
(1 + cos θ∗

ν)
(4.12)

and

Eν =
Eπ(m2

π −m2
µ)

2m2
π

(1 + cos θ∗
ν), (4.13)

where θ∗
ν is the angle between the directions of the pion

and neutrino momentum vectors in the pion rest frame,
(4.11) may be rewritten as

φν,π
12 = − ∆m2

cos θ1Eν

m2
µ

(m2
π −m2

µ)
L. (4.14)

For θ1 = 0 the oscillation phase is the same as for pion
decay at rest (see (2.26)) since in the latter case Eν �
P0 = (m2

π −m2
µ)/(2mπ). Using (4.14), the probability to

observe a neutrino interaction, at point B, produced by the
decay product of a pion decay occuring within a region of
length lDec (	 L) centered at the point A, in a beam of
energy Eπ, is given by a formula analogous to (2.26):

P (e−p|L, θ1)
=
lDecmπΓπ

Eπ
|〈e−p|TR|nν0〉|2|〈ν0µ+|TR|π+〉|2

× sin2 θ cos2 θ

{
1 − cos

m2
µ∆m

2L

(m2
π −m2

µ)Eν cos θ1

}
.(4.15)

As in the case of pion decay at rest, (2.26), the oscillation
phase differs by the factor 2m2

µ/(m
2
π −m2

µ) = 2.685 from
that given by the standard formula.
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The derivation of the formula describing muon oscilla-
tions following pion decays in flight is very similar to that
just given for neutrino oscillations. The condition on the
velocities so that the muons recoiling against the different
neutrino mass eigenstates arrive at the point B (see Fig. 3)
at the same time, is given by a formula analogous to (4.2):

∆v(µ) = v2(µ) − v1(µ)

=
v1(µ)[v1(µ) − vπ cos θ1]

vπ sin θ1
δ. (4.16)

The formula relating the neutrino masses to the muon
velocities is, however, more difficult to derive than the
corresponding relation for neutrinos, (4.3), as the decay
muons are not ultra-relativistic in the pion rest frame.
The details of this calculation are given in Appendix B.
The result is

∆v(µ) =
m2

µ(m2
π +m2

µ)∆m2

E2
µ(m2

π −m2
µ)2

(
1 − 2m2

µEπ

(m2
π +m2

µ)Eµ

)

+ O(m4
1,m

4
2). (4.17)

Using (4.16) and the relation, valid to first order in δ,

∆t =
Lδ

vπ cos θ1 sin θ1
, (4.18)

where ∆t is the flight time of the pion from A to C in
Fig. 3 (and also the difference in the times-of-flight of the
muons recoiling against the two neutrino eigenstates), the
angle δ may be eliminated to yield

∆t =
∆v(µ)L

v1(µ) cos θ1[v1(µ) − vπ cos θ1]
. (4.19)

Using now the kinematical relation (see Appendix B):

v1(µ) − vπ cos θ1 =
(m2

π +m2
µ)

2EπEµ

(
1 − 2m2

µEπ

(m2
π +m2

µ)Eµ

)

(4.20)
and the expression for the phase difference of the paths
AB and ACB,

φµ,π
12 = ∆φAB −∆φACB = ∆t

(
m2

µ

Eµ
− m2

π

Eπ

)
, (4.21)

together with (4.19), it is found, taking the UR limit,
where v1(µ), vπ � 1, that

φµ,π
12 =

2m2
µ∆m

2

E2
µ(m2

π −m2
µ)2

[
(m2

µEπ −m2
πEµ)L

cos θ1

]
. (4.22)

The probability of detecting a muon decay at B is then

P (e+νν|L, θ1)
=
lDecmπΓπ

Eπ
|〈e+ν0ν0|TR|µ+〉|2

× exp
[
− Γµmµ

Eµ cos θ1
L

]
|〈ν0µ+|TR|π+〉|2

×
{

1 − sin 2θ cos
2m2

µ∆m
2

E2
µ(m2

π −m2
µ)2

×
[

(m2
µEπ −m2

πEµ)L
cos θ1

]}
, (4.23)

where lDec is defined in the same way as in (4.15).

5 Discussion

The quantum mechanics of neutrino oscillations has been
surveyed in recent review articles [19–21], where further
extensive lists of references may be found.

In this section, the essential difference between the cal-
culations presented in the present paper and all previous
treatments in the literature of the quantum mechanics of
neutrino oscillations, as cited in the above review articles,
will be summarised and applications of the Feynman path
amplitude description to other chains of physical processes
in space-time will be briefly discussed. A more extended
critical review of the existing literature may be found in
[25].

Hitherto, it has been assumed that the neutrino source
produces a “lepton flavour eigenstate” that is a superposi-
tion of mass eigenstates, at some fixed time. In this paper
it is, instead, assumed following Shrock [22,23] that the
neutrino mass eigenstates are produced incoherently in
different physical processes. This follows from the struc-
ture of the leptonic charged current in the electroweak
standard model:

Jµ(CC)lept =
∑
α,i

ψαγµ(1 − γ5)Uαiψνi . (5.1)

Only the wavefunctions of the physical neutrino mass
eigenstates νi appear in this current, and hence in the ini-
tial or final states of any physical process. A consequence
is that the neutrino mass eigenstates can be produced
at different times in the path amplitudes corresponding
to different mass eigenstates. It has recently been shown
that experimental measurements of the decay width ra-
tio Γ (π → eν)/Γ (π → µν) and of the MNS matrix ele-
ments are inconsistent with the production of a coherent
“lepton flavour eigenstate” in pion decay [24] and that
the “equal time” or “equal velocity” hypothesis result-
ing from this assumption underestimates, by a factor of
two, the contribution of neutrino propagation to the os-
cillation phase [25]. As demonstrated above, allowing for
the possibility of different production times of the neu-
trinos results in an important, decay process dependent,
contribution to the oscillation phase from the propaga-
tor of the source particle. The non-diagonal elements of
Uαi in (5.1) describe violation of lepton flavour (or gen-
eration number) by the weak charged current. For mass-
less neutrinos, the MNS matrix becomes diagonal; lepton
flavour is conserved within each generation, and the fa-
miliar “lepton flavour eigenstates” are given by the re-
placements ν1 → νe, ν2 → νµ, ν3 → ντ . Only in this case
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are the lepton flavour eigenstates physical, being all mass
eigenstates of vanishing mass.

The standard derivation of the neutrino oscillation
phase will now be considered, following the treatment of
[3], but using the notation of the present paper. The cal-
culation is performed assuming an initial “muon flavour
eigenstate of the neutrino” that is a superposition of the
mass eigenstates |ν1〉 and |ν2〉 :

|νµ〉 = Uµ1|ν1, p〉 + Uµ2|ν2, p〉
= − sin θ|ν1, p〉 + cos θ|ν2, p〉, (5.2)

where |νi, p〉 are mass eigenstates of fixed momentum p.
This flavour eigenstate is assumed to evolve with labora-
tory time, t, according to fixed energy solutions of the non-
relativistic Schrödinger equation into the mixed flavour
state |α, t〉:

|α, t〉 = − sin θe−iE1t|ν1, p〉 + cos θe−iE2t|ν2, p〉, (5.3)

where E1, E2 are the laboratory energies of the neutrino
mass eigenstates. The amplitude for transition into the
“electron flavour eigenstate”:

|νe, p〉 = Ue1|ν1, p〉 + Ue2|ν2, p〉
= cos θ|ν1, p〉 + sin θ|ν2, p〉 (5.4)

at time t is then, using (5.3) and (5.4)

〈νe, p|α, t〉 = sin θ cos θ
(−e−iE1t + e−iE2t

)
. (5.5)

Because it is assumed that the neutrinos have the same
momentum but different energies,

Ei =
√
p2 +m2

i = p+
m2

i

2p
+O(m4

i ), (5.6)

and using (5.5) and (5.6), the probability of the flavour
state νe at time t is found to be

P (νe, t) = |〈νe, p|α, t〉|2

= 2 cos2 θ sin2 θ

(
1 + cos

[
(m2

1 −m2
2)

2p
t

])
. (5.7)

Finally, since the velocity difference of the neutrino mass
eigenstates is O(∆m2), then, to the same order in the
oscillation phase, the replacement t → L can be made in
(5.7) to yield the standard oscillation phase of (1.1).

The following comments may be made on this deriva-
tion.

(i) The time evolution of the neutrino mass eigenstates
in (5.3) according to the Schrödinger equation yields
a non-Lorentz-invariant phase � Et, to be compared
with the Lorentz-invariant phase � m2t/E given in
(2.14) above. Although the two expressions agree in
the non-relativistic limit E � m it is clearly inap-
propriate to use this limit for the description of neu-
trino oscillation experiments. It may be noted that
the Lorentz-invariant phase is robust relative to dif-
ferent kinematical approximations. The same result

is obtained to order m2 for the phase of spatial os-
cillations independent of whether the neutrinos are
assumed to have equal momenta or energies. This is
not true in the non-relativistic limit. Assuming equal
momenta gives the standard result of (1.1), whereas
the equal energy hypothesis results in a vanishing os-
cillation phase. A contrast may be noted here with
the standard treatment of neutral kaon oscillations,
which follows closely the derivation in (5.2) to (5.7)
above, except that the particle phases are assumed to
evolve with time according to the Lorentz-invariant
expression, exp[−imτ ], where m is the particle mass
and τ is its proper time, in agreement with (2.11).

(ii) As pointed out in [6], the different neutrino mass
eigenstates do not have equal momenta as assumed
in (5.2) and (5.6). The approximation of assuming
equal momenta might be justified if the fractional
change in the momentum of the neutrino due to a
non-vanishing mass were much less than that of the
energy. However, in the case of pion decay as is read-
ily shown from (2.4) and (2.6) above, the ratio of the
fractional shift in momentum to that in energy is ac-
tually (m2

π +m2
µ)/(m2

π −m2
µ) = 3.67; so, in fact, the

opposite is the case.
(iii) The derivation of (5.7) is carried out in the abstract

Hilbert space of the neutrino mass eigenstates or
“lepton flavour eigenstates” without any reference to
the production or detection processes necessary for
the complete description of an experiment in which
“neutrino oscillations” may be observed. In this cal-
culation the “mass” and “flavour” bases are treated
as physically equivalent. However in standard model
amplitudes only states of the mass basis appear. Also
it has been pointed out that “flavour momentum
eigenstates” cannot be defined in a theoretically con-
sistent manner [26]. Their existence is, in any case,
excluded by experiment for the case of pion decay
[24].

(iv) What are the physical meanings of t, p in (5.3)? In
this equation it is assumed that the neutrino mass
eigenstates are both produced, and both detected,
at the same times. Thus both have the same time-
of-flight t. The momentum p cannot be the same for
both eigenstates, as assumed in (5.6), if both energy
and momentum are conserved in the decay process.
For any given value of the laboratory time t the dif-
ferent neutrino mass eigenstates must be at different
space-time positions because they have different ve-
locities13, if it is assumed that both mass eigenstates
are produced at the same time. It then follows that
the different mass eigenstates cannot be probed, at
the same space-time point, by a neutrino interaction,
whereas the latter must occur at a definite space-
time point in every detection event. In fact, there is
an inconsistent treatment of the velocity of the neu-

13 This is true not only in the case of energy-momentum con-
servation, but also if it is assumed, as in the derivation of the
standard formula, that the neutrinos have the same momentum
but different energies.
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trinos. Equal production times imply equal space-
time velocities, whereas it is assumed that “kinemat-
ical velocities” defined as pi/Ei are different for the
different mass eigenstates.

(v) The historical development of the calculation of the
neutrino oscillation phase is of some interest. The
first published prediction [27] actually obtained a
phase a factor two larger than (1.1) i.e. in agree-
ment with the contribution from neutrino propa-
gation found in the present paper. This prediction
was later used, for example, in [28]. The derivation
sketched above, leading to the standard result of
(1.1) was later given in [29]. A subsequent paper [30]
by the authors of [28], published shortly afterwards,
cited both [27] and [29], but used now the prediction
of the latter paper. No comment was made on the
factor of two difference in the two calculations. In
a later review article, [31], by the authors of [28] a
calculation similiar to that of [29] was presented in
detail. Subsequently, all neutrino oscillation experi-
ments have been analysed on the assumption of the
standard oscillation phase of (1.1).

It may be thought that the kinematical and geometrical
inconsistencies mentioned in points (ii) and (iv) above re-
sult from a too classical approach to the problem. After all,
what does it mean, in quantum mechanics, to talk about
the “position” and “velocity” of a particle, in view of the
Heisenberg uncertainty relations [32]? Following the orig-
inal suggestion of [33] in almost all subsequent work on
the quantum mechanics of neutrino oscillations, a “wave
packet” description of the neutrino mass eigenstates has
been cojectured. In this approach, both the “source” and
also possibly the “detector” in the neutrino oscillation ex-
periment are described by coherent spatial wave packets.
An extended critical discussion of this approach may be
found in [25]. There it is concluded that the introduction
of wave packets in this ad hoc manner is without physical
foundation.

Correlated production and detection of neutrinos and
muons produced in pion decay were considered in [34,35].
The introduction to [35] contains a valuable discussion of
the universality of the “particle oscillation” phenomenon.
It is pointed out that this is a consequence of the gen-
eral principle of amplitude superposition in quantum me-
chanics, and so is not a special property of the K0–K

0
,

B0–B
0

and neutrino systems which are usually discussed
in this context. This paper used a covariant formalism
that employed the “energy representation” of the space-
time propagator. Correlated spatial oscillations of neutri-
nos and muons are predicted, though with interference
phases different from the results of both the present paper
and the standard formula. Pion and muon lifetime effects
were mentioned in [35], but neither the role of the pion
lifetime in enabling different propagation times for the
neutrinos nor the momentum smearing, induced by the
Fourier-transform-related Breit–Wigner amplitudes, were
discussed.

The claim of [34] that correlated neutrino–muon oscil-
lations should be observable in pion decay was questioned

in [36]. The authors of the latter paper attempted to draw
conclusions on the possibility, or otherwise, of particle os-
cillations by using “plane waves”, i.e. energy-momentum
eigenfunctions. As is well known, such wavefunctions are
not square integrable, and so can yield no spatial infor-
mation. The probability to find a particle described by
such a wave function in any finite spatial volume is zero.
Due to the omission of the (infinite) normalisation con-
stants of the wavefunctions many of the equations in [36]
are, as previously pointed out [37], dimensionally incor-
rect. Momentum wavepackets for the decaying pion were
also discussed in [36]. Although exact energy-momentum
conservation constraints were used, it was assumed, as in
[34,35], that the muons and the different neutrino mass
eigenstates are both produced and detected at common
points ((35) of [36]). The latter assumption implies equal
velocities, yielding the standard neutrino oscillation phase.
The authors of [36] drew the following conclusions:
(a) Correlated µ–ν oscillations of the type discussed in

[35] could be observed, though with different oscilla-
tion phases.

(b) Oscillations would not be observed if only the muon
is detected.

(c) Neutrino oscillations can be observed even if the muon
is not detected.
Conclusion (b) is a correct consequence of the (incor-

rect) assumption that the muons recoiling against the dif-
ferent neutrino mass eigenstates have the same velocity.
As both muons have the same mass they will have equal
proper time increments. So according to (2.12) the phase
increments will also be equal and the interference term will
vanish. The conclusion (c) is in agreement with the pre-
diction of (3.22) of [35]. The path amplitude calculation of
the present paper shows that conclusion (b) is no longer
valid when the different possible times of propagation of
the recoiling muons are taken into account.

It is clearly of great interest to apply the calculational
method developed in the present paper to the case of neu-
tral kaon and b-meson oscillations. Indeed the use of the
invariant path amplitude formalism has previously been
recommended [38] for experiments involving correlated
pairs of neutral kaons. Here, just a few remarks will be
made on the main differences to be expected from the
case of neutrino or muon oscillations. A further discussion
can be found in [25].

In the case of neutrino and muon oscillations, the in-
terference effect is possible as the different neutrino eigen-
states can be produced at different times. This is because
the decay lifetimes of all interesting sources (pions, muons,
β-decaying nuclei) are much longer than the time differ-
ence between the paths corresponding to the interfering
amplitudes. To see if a similar situation holds in the case of
KS–KL oscillations, three specific examples will be consid-
ered with widely differing momenta of the neutral kaons:

(I) φ → KSKL;
(II) π−p → ΛK0 at

√
s = 2 GeV;

(III) π−p → ΛK0 at
√
s = 10 GeV.

These correspond to neutral kaon centre-of-mass momenta
of 108 MeV, 750 MeV and 5 GeV respectively. In each case
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the time difference (∆tK) of production of KS and KL
mesons, in order that they arrive at the same time at a
point distant cγKτS (where γK is the usual relativistic
parameter) from the source in the centre-of-mass frame
is calculated. Exact relativistic kinematics is assumed and
only leading terms in the mass difference∆mK = mL−mS

are retained. Taking the value of ∆mK and the various
particle masses from [40] the following results are found for
∆tK in the three cases: (I) 2.93×10−24 s, (II) 8.3×10−25 s
and (III) 6.4×10−26 s. For comparison, for neutrino oscil-
lations following pion decay at rest, with ∆m2 = (1 eV)2
and L = 30 m, (2.29) gives ∆tν = 5.6×10−23 s. The result
(I) may be compared with the mean life of the φ meson of
1.5×10−22 s [40]. Thus the φ lifetime is a factor of about
27 larger than ∆tK indicating that KS–KL interference
should be possible by a similar mechanism to neutrino os-
cillations following pion decays, i.e. without invoking ve-
locity smearing of the neutral kaon mass eigenstates. In
cases (I) and (II) the interference effects observed will de-
pend on the “characteristic time” of the non-resonant (and
hence incoherent) strong interaction process, a quantity
that has, hitherto, not been susceptible to experimental
investigation14. If this time is much less than, or compa-
rable to, ∆tK , essentially equal velocities (and therefore
appreciable velocity smearing) of the eigenstates will be
necessary for interference to occur. Since ∆mK and ΓS are
comparable in size, velocity smearing effects are expected
to be, in any case, much larger than for neutrino oscilla-
tions following pion decay. These effects may be roughly
estimated by using the Gaussian approximation (2.21) of
the present paper. The main contribution to the velocity
smearing is due to the variation of the physical mass of
the KS rather than those of the KL or Λ.

Taking into account this smearing of the physical mass
of the KS, the change in velocity as compared to that
corresponding to the pole mass, due to this effect, is of
the same order as that due to the KL–KS mass difference.
The KS and KL can then have almost equal velocities and
hence almost equal production times, so that

∆τL � ∆τS � ∆τ. (5.8)

Using the formula ∆τ = mK0L/pK0 , relating the decay
distance, D, to the proper time increment ∆τ , and (2.11)
gives for the phase increments corresponding to KL, KS:

∆φi =
mimK0D

pK0
(i = L, S). (5.9)

Setting mK0 = (mL +mS)/2 in (5.9) yields, for the oscil-
lation phase

φLS � ∆mKmK0D

pK0
=

(mL −mS)(mL +mS)D
2pK0

=
(m2

L −m2
S)D

2pK0
. (5.10)

14 A similar physical quantity has been considered in [41],
where the possibility of observable modifications to the expo-
nential decay law and the Breit–Wigner line shape distribution
is suggested.

This is the same as the standard formula for neutrino os-
cillations, also derived, as discussed in detail in Ref [25],
on the assumption of equal velocities for different neu-
trino mass eigenstates. The conventionally used formula
for neutral kaon oscillations is the first member of (5.10)
i.e. equal proper time intervals, as calculated from the ob-
served decay distance, and hence equal velocities, are as-
sumed. Unlike for the case of neutrino oscillations where
this assumption is definitely incorrect [25], it is likely to
be a good first approximation in the case of neutral kaon
(and neutral b-meson) oscillations. Although it would be
interesting to estimate quantitatively the effect of veloc-
ity smearing and contributions to the oscillation phase
due to different production times, such corrections are not
expected to be large, so that the experimental values of
∆mK and ∆mB should be little affected.

It is interesting to note that the possibility of “Λ os-
cillations” in the processes π−p → Λ(K0

L,K
0
S) analogous

to “µ oscillations” in the processes π → µ(ν1, ν2) has pre-
viously been proposed in the literature [39].

For the B1–B2 oscillation case, analogous to (I) above,
Υ (4S) → B1B2, where pB = 335 MeV, the value of
∆tB is found to be 1.4 × 10−22 s, to be compared with
τ(Υ (4S)) = 4.7 × 10−23 s [40], which is a factor 3 smaller.
Thus, velocity smearing effects are expected to play an im-
portant role in B1–B2 oscillations. This is possible, since
the neutral b-meson decay width (4.3 × 10−10 MeV) and
the mass difference (3.1 × 10−10 MeV) have similar sizes.

In closing, it is interesting to mention two types of
atomic physics experiments where interference effects sim-
ilar to the conjectured (and perhaps observed [14,42,43])
neutrino oscillations have already been clearly seen.

The first is quantum beat spectroscopy [44]. This type
of experiment, which has previously been discussed in con-
nection with neutrino oscillations [37], corresponds closely
to the gedanken experiment used by Heisenberg [10] to
exemplify the fundamental law of quantum mechanics,
(1.2). The atoms of an atomic beam are excited by pas-
sage through a thin foil or a laser beam. The quantum
phase of an atom with excitation energy E∗ evolves with
time according to exp(−iE∗∆t) (see the discussion after
(3.3) above). If decay photons from two nearby states with
excitation energies E∗

α and E∗
β are detected after a time

interval ∆t ( for example by placing a photon detector be-
side the beam at a variable distance d from the excitation
foil) a cosine interference term with phase:

φbeat =
(E∗

α − E∗
β)d

vatom
, (5.11)

where vatom is the average velocity of the atoms in the
beam, is observed [44]. An atom in the beam, before exci-
tation, corresponds to the neutrino source pion. The exci-
tation process corresponds to the decay of the pion. The
propagation of the two different excited states, alternative
histories of the initial atom, correspond to the alternative
propagation of the two neutrino mass eigenstates. Finally,
the decay of the atoms and the detection of a single pho-
ton corresponds to the neutrino detection process. The
particular importance of this experiment for the path am-



374 J.H. Field: Spatially dependent quantum interference effects in the detection probability of charged leptons

plitude calculations presented in the present paper is that
it demonstrates, experimentally, the important contribu-
tion to the interference phase of the space-time propaga-
tors of excited atoms, in direct analogy to the similar con-
tributions of unstable pions, muons and nuclei discussed
above.

An even closer analogy to neutrino osillations follow-
ing pion decay is provided by the recently observed process
of photodetachment of an electron by laser excitation: the
“Photodetachment Microscope” [45]. A laser photon ejects
the electron from, for example, an 16O− ion in a beam. The
photodetached electron is emitted in an S-wave (isotrop-
ically) and with a fixed initial energy. It then moves in
a constant, vertical, electric field that is perpendicular to
the direction of the ion beam and almost parallel to the
laser beam. An upward moving electron that is deceler-
ated by the field eventually undergoes “reflection” before
being accelerated towards a planar position-sensitive elec-
tron detector situated below the beam and perpendicular
to the electric field direction (see Fig. 1 of [45]). In these
circumstances, it can be shown [46] that just two classi-
cal electron trajectories link the production point to any
point in the kinematically allowed region of the detection
plane. Typical parameters for 16O− are [47]: initial elec-
tron kinetic energy, 102 µeV: detector distance, 51.4 cm;
average time-of-flight, 117 ns; difference in emission times
for the electrons to arrive in spatial-temporal coincidence
at the detector plane, 160 ps. An interference pattern is
generated by the phase difference between the amplitudes
corresponding to the two allowed trajectories. The phase
difference, derived by performing the Feynman path in-
tegral of the classical action along the classical trajecto-
ries [47], gives a very good description of the observed in-
terference pattern. The extremely close analogy between
this experiment and the neutrino oscillation experiments
described in Sects. 2 and 3 above is evident. Notice that
the neutrinos, like the electrons in the photodetachment
experiment, must be emitted at different times, in the al-
ternative paths, for interference to be possible. This is the
crucial point that was not understood in all previous treat-
ments of the quantum mechanics of neutrino oscillations.

Actually, [47] contains, in Sect. IV, a path amplitude
calculation for electrons in free space that is geometri-
cally identical to the discussion of pion decays in flight
presented in Sect. 4 above (compare Fig. 3 of the present
paper with Fig. 3 of [47]) The conclusion of [47] is that,
in this case, no interference effects are possible for elec-
trons that are mono-energetic in the source rest frame. As
is shown in Sect. 4 above, if these electrons are replaced
either by neutrinos of different masses from pion decay, or
muons recoiling against such neutrinos, observable inter-
ference effects are indeed to be expected.

Appendix A

Random thermal motion of the decaying pion in the target
has two distinct physical effects on the phase of neutrino
oscillations,

φν,π
12 (0) = −∆m2L

P0
+
mπ∆m

2L

2P 2
0

(A1)

(where the first and second terms in (A1) give the contri-
butions of the neutrino and pion paths respectively).

(1) The observed neutrino momentum, Pν , is no longer
equal to P0, due to the boost from the pion rest frame
to the laboratory system (Doppler effect or Lorentz
boost).

(2) The time increment of the pion path tD − t0 (see
(2.16)) no longer corresponds to the pion proper time
(relativistic time dilatation).

Taking into account (1) and (2) gives for the neutrino
oscillation phase

φν,π
12 (corr) = −∆m2L

Pν
+
mπ∆m

2L

2γπP 2
ν

, (A2)

where

Pν = γπP0(1 + vπ cos θ∗
ν) and γπ =

Eπ

mπ
.

Here, θ∗
ν is the angle between the neutrino momentum vec-

tor and the pion flight direction in the pion rest frame. De-
veloping γπ and vπ in terms of the small quantity pπ/mπ,
(A2) may be written as

φν,π
12 (corr) = φν,π

12 (0) +
pπ

mπ

∆m2L

P0

[
1 − mπ

P0

]
cos θ∗

ν

+
(
pπ

mπ

)2
∆m2L

2P0

[
1 − 3mπ

2P0

]
. (A3)

Performing now the average of the interference term over
the isotropic distribution in cos θ∗

ν :

〈cosφν,π
12 (corr)〉θ∗

ν

=
1
4
Re
∫ 1

−1
exp[iφν,π

12 (corr)]d cos θ∗
ν

=
1
2
Re exp

{
iφν,π

12 (0)

+
(
pπ

mπ

)2(
i
∆m2L

2P0

[
1 − 3mπ

2P0

]

− 1
6

(
∆m2L

P0

[
1 − mπ

P0

])2)}
. (A4)

In deriving (A4) the following approximate formula is
used:

1
2

∫ 1

−1
eiαcdc =

1
2iα
[
eiα − e−iα]

=
sinα
α

� 1 − α2

6
, (A5)
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where

α ≡ pπ

mπ

∆m2L

P0

[
1 − mπ

P0

]
	 1.

The average over the Maxwell–Boltzmann distribution
(2.31) is readily performed by “completing the square”
in the exponential, with the result

〈cosφν,π
12 (corr)〉θ∗

ν ,pπ

=
1
2
Re exp

{
−
(
pπ∆m

2L

2mπP0

[
1 − mπ

P0

])2

+ i

[
φν,π

12 (0) +
3
4

(
pπ

mπ

)2(
∆m2L

P0

[
3mπ

2P0
− 1
])]}

≡ F ν(Dop) cos[φν,π
12 (0) + φν(Dop)], (A6)

leading to (2.32) and (2.33) for the Doppler damping fac-
tor F ν(Dop) and phase shift φν(Dop), respectively.

The correction for the effect of thermal motion in the
case of muon oscillations φν(Dop), respectively, is per-
formed in a similar way. The oscillation phase

φµ,π
12 (0) = −m2

µE
µ
0∆m

2L

2mπP 3
0

+
mµ∆m

2L

2P 3
0

(A7)

is modified by the Lorentz boost of the muon momen-
tum and energy, and the relativistic time dilatation of the
phase increment of the pion path, to

φµ,π
12 (corr) = −m2

µEµ∆m
2L

2mπP 3
µ

+
mµ∆m

2L

2γπP 3
µ

, (A8)

where
Eµ = γπE

µ
0 (1 + vπv

µ
0 cos θ∗

µ),

and vµ
0 is given by (2.37). Developing, as above, in terms

of pπ/mπ, gives

φµ,π
12 (corr)

= φµ,π
12 (0) +

pπ

mπ

vµ
0m

2
µ∆m

2L

P 3
0

[
Eµ

0

mπ
− 3

2

]
cos θ∗

µ

+
(
pπ

mπ

)2 m2
µ∆m

2L

P 3
0

[
Eµ

0

2mπ
− 1
]
. (A9)

Performing the averages over θ∗
µ and pπ then leads to

(2.53) and (2.54) for the damping factor Fµ(Dop) and
phase shift φµ(Dop), respectively.

The effect of the finite longitudinal dimensions of the
target or detector is calculated by an appropriate weight-
ing of the interference term according to the value of
the distance X = xf − xi between the decay and detec-
tion points (see Fig. 1). Writing the interference phase as
φ12 = βX, and assuming a uniform distribution of decay
points within the target of thickness �T :

〈cosφ12〉 =
1
�T

∫ L+ �T
2

L− �T
2

cosβXdX

=
2
β�T

sin
β�T
2

cosβL

≡ FTarg cosβL. (A10)

Substituting the value of β appropriate to neutrino oscil-
lations yields (2.34). Since the value of β is the same for
neutrino and muon oscillations, the same formula is also
valid in the latter case. The same correction factor, with
the replacement �T → �D describes the effect of a finite
detection region of length �D:

L− �D
2

+ xi < xf < L+
�D
2

+ xi.

Appendix B

The first step in the derivation of (4.17) relating ∆v(µ)
to ∆m2 is to calculate the angle δ∗, in the centre-of-mass
(CM) system of the decaying pion, corresponding to δ in
the laboratory (LAB) system (see Fig. 3). It is assumed,
throughout, that the pion and muon are ultra-relativistic
in the latter system, so that vπ, vi(µ) � 1. The Lorentz
transformation relating the CM and LAB systems gives
the relation

sin θi =
v∗

i (µ) sin θ∗
i

γπ(1 + v∗
i (µ) cos θ∗

i )
, i = 1, 2. (B1)

The starred quantities refer to the pion CM system. Mak-
ing the substitutions θ2 = θ1 + δ, θ∗

2 = θ∗
1 + δ∗, (B1) may

be solved to obtain, up to first order in δ, δ∗ and ∆m2:

∆v∗(µ) = v∗
2(µ) − v∗

1(µ)

=
γπ(1 + v∗

0(µ) cos θ∗
1)2δ − v∗

0(µ)(cos θ∗
1 + v∗

0(µ))δ∗

sin θ∗
1

,

(B2)

where (c.f. (2.37))

v∗
0(µ) =

m2
π −m2

µ

m2
π +m2

µ

. (B3)

Using (2.36) ∆v∗(µ) may be expressed in terms of the
neutrino mass difference:

∆v∗(µ) =
4m2

µm
2
π∆m

2

(m2
π −m2

µ)(m2
π +m2

µ)2
. (B4)

Eliminating now ∆v∗(µ) between (B2) and (B4) gives a
relation between δ, δ∗ and ∆m2:

δ∗ =
γπ(1 + v∗

0(µ) cos θ∗
1)2δ

v∗
0(µ)(cos θ∗

1 + v∗
0(µ))

− 4m2
µm

2
π∆m

2 sin θ∗
1

(m2
π −m2

µ)2(m2
π +m2

µ)(cos θ∗
1 + v∗

0(µ))
. (B5)

In the LAB system, and in the UR limit, the difference
of the velocities of the muons recoiling against the two
neutrino mass eigenstates is

∆v(µ) = v2(µ) − v1(µ) =
P2(µ)
E2(µ)

− P1(µ)
E1(µ)

� m2
µ

E3
µ

[E2(µ) − E1(µ)], (B6)
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where Eµ is the muon energy in the LAB system for van-
ishing neutrino masses. Making the Lorentz transforma-
tion of the muon energy from the pion CM to the LAB
frames, and using (2.4) and (2.36) to retain only terms
linear in ∆m2 and δ∗, enables (B6) to be re-written as

∆v(µ) =
Eπ

2E3
µ

(
mπ

mµ

)2

×
[
∆m2(cos θ∗

1 + v∗
0(µ))

v∗
0(µ)

− δ∗(m2
π −m2

µ) sin θ∗
1

]
, (B7)

where Eπ is the energy of the pion beam. By combining
the geometrical constraint equation for the muon veloci-
ties, (4.16) with (B5) and (B7) the angles δ and δ∗ may
be eliminated to yield the equation for the LAB frame
velocity difference:

∆v(µ) =
Eπ∆m

2

2m2
π(m2

π −m2
µ)
A

B
, (B8)

where

A = (v1(µ) − vπ cos θ1)

×
{

(cos θ∗
1 + v∗

0(µ))2 +
4m2

µm
2
π sin2 θ∗

1

(m2
π +m2

µ)2

}
(B9)

B =
Eπ(m4

π −m4
µ)(1 + v∗

0(µ) cos θ∗
1)

8m4
πm

2
µ

×
{
E2

π(m2
π +m2

µ)(1 + v∗
0(µ) cos θ∗

1)2

m2
π(m2

π −m2
µ)

× (cos θ∗
1 + v∗

0(µ))(v1(µ) − vπ cos θ1)

+
4m2

µm
2
π sin2 θ∗

1

(m2
π +m2

µ)2

}
. (B10)

To simplify (B8), the quantity (v1(µ)−vπ cos θ1) is now
expressed in terms of kinematic quantities in the pion CM
system. Within the UR approximation used,

θ1,mπ/Eπ,mµ/Eµ 	 1,

so that

v1(µ) − vπ cos θ1 =
1
2

(
m2

π

E2
π

− m2
µ

E2
µ

+ θ21

)

+O

((
mπ

Eπ

)4

,

(
mµ

Eµ

)4

, θ41

)
(B11)

Writing (B1) to first order in θ1, and neglecting terms of
O(θ1m2

i ):

θ1 =
mπv

∗
0 sin θ∗

1

Eπ(1 + v∗
0(µ) cos θ∗

1)
. (B12)

Using (B12), and expressing Eµ in terms of pion CM quan-
tities, (B11) may be written as

v1(µ) − vπ cos θ1

=
m2

π(m2
π −m2

µ)(cos θ∗
1 + v∗

0(µ))
E2

π(m2
π +m2

µ)(1 + v∗
0(µ) cos θ∗

1)2
. (B13)

Expressing the RHS of (B13) in terms of Eπ and Eµ and
using the relation

cos θ∗
1 =

m2
π(2Eµ − Eπ) −m2

µEπ

Eπ(m2
π −m2

µ)
(B14)

gives (4.20) of the text.
On substituting (B13) into the RHS of (B10), it can

be seen that the factor in the large curly brackets is the
same in (B9) and (B10), and so cancels in the ratio A/B
in (B8). It follows that

∆v(µ) =
m2

µ∆m
2

E2
µ(m2

π −m2
µ)

(
cos θ∗

1 + v∗
0(µ)

1 + v∗
0(µ) cos θ∗

1

)
. (B15)

Finally, using (B3) and (B14) to express the factor in
large brackets in (B15) in terms of Eµ and Eπ, (4.17) of
the text is obtained.
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